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In contrast to speech recognition, whose speech features have been extensively explored in the research
literature, feature extraction in Sign Language Recognition (SLR) is still a very challenging problem. In this
paper we present a methodology for feature extraction in Brazilian Sign Language (BSL, or LIBRAS in Por-
tuguese) that explores the phonological structure of the language and relies on RGB-D sensor for obtain-
ing intensity, position and depth data. From the RGB-D images we obtain seven vision-based features.
Each feature is related to one, two or three structural elements in BSL. We investigate this relation
between extracted features and structural elements based on shape, movement and position of the
hands. Finally we employ Support Vector Machines (SVM) to classify signs based on these features and
linguistic elements. The experiments show that the attributes of these elements can be successfully rec-
ognized in terms of the features obtained from the RGB-D images, with accuracy results individually
above 80% on average. The proposed feature extraction methodology and the decomposition of the signs
into their phonological structure is a promising method to help expert systems designed for SLR.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Languages are complex systems of communication that humans
use to express themselves, to manipulate objects and ideas and to
foster cooperation and social bonds. The estimated number of lan-
guages in the world amount to a few thousands, the majority of
which are vocal languages, also termed oral or spoken languages.
Nevertheless, natural languages can also be signed ones, which is
the most natural modality for deaf people. Both vocal and sign lan-
guages are composed by a limited set of building blocks called pho-
nemes; in sign languages a limited set of shapes, orientations,
locations and movements of the hands are combined to make up
the words or morphemes of the language. The grammatical rules
of the language link those morphemes into phrases and units of
discourse. Many countries in the world have an official sign lan-
guage, some examples are American Sign Language (ASL), French
Sign Language (FSL), Italian Sign Language (ISL), Polish Sign Lan-
guage (PSL), Japanese Sign Language (JSL), among others. In Brazil,
the official sign language is the Brazilian Sign Language (BSL),1
which was developed in the 19th century as a combination of the
ancient Brazilian Sign Language and the French Sign Language. BSL
is even different from the Portuguese Sign Language, even though
Brazil and Portugal have the same vocal language, the Portuguese.
Nowadays, BSL is recognized as an official language in Brazil with
an estimated number of 5 million speakers, which is greater than
the number of speakers of many vocal languages in the world.

Sign languages are visual-space languages, sharing spatial and
visual elements such as shape of the hands, location and orienta-
tion of the signs, and the movements of the hands and the body
together to convey ideas. All sign languages are characterized by
these building blocks, differing basically in variations of these spa-
tial and visual elements. In general, sign languages share a com-
mon phonological structure, with five elements2: (i) articulation
point; (ii) Configuration of the hands; (iii) type of movements of
the hands; (iv) orientation and (v) facial and body expressions. Each
sign in each language is composed by a combination of these build-
ing blocks. These elements represent an important aspect of the lan-
guage and can be exploited in automatic expert systems aimed at
Sign Language Recognition (SLR). In contrast to speech recognition,
whose speech features have been extensively explored in the
efined in
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research literature, feature extraction in SLR is still a very challeng-
ing problem, still lacking effective features for recognition that
are independent from signers. Feature extraction in SLR requires
different methods and approaches than in speech recognition. Most
of the research literature focuses on specialized techniques of
computer vision for extracting features but it is possible to find
other approaches relying on gloves, sensors on fingers and hands
and, more recently, RGB-D sensors, which capture not only
color information but also depth infrared images. In a wider con-
text, research on SLR has a potential impact on human–computer
interaction, since both modalities of natural languages (vocal and
signed) could in principle be used as an interface to interact with
computers.

In this paper we present a methodology for feature extraction in
Brazilian Sign Language that explores the phonological structure of
the language and relies on an RGB-D sensor for obtaining data. Our
goal is to extract features that would allow, in future work, the cre-
ation of an expert system capable of automatically translating
signs from BSL to vocal Portuguese. To avoid retraining the system
to every new sign and to overcome the scalability challenge related
to the high number of different signs in the language, we relate
these features to the phonological structure of the BSL. The use
of an RGB-D sensor is very convenient in this application, since it
is a low cost sensor with relatively easy programming. Therefore,
we propose herein an innovative methodology in which the com-
putational system should be guided by the linguistic system in
the feature extraction process.

From the RGB-D images we obtain seven vision-based features.
Each feature is related to one, two or three structural elements in
BSL. We investigate this relation between extracted features and
structural elements based on shape, movement and position of
the hands. We consider that exploiting this relation is an important
contribution of our approach when compared to other work on
SLR. Since each sign is composed by these elements, the main idea
is that establishing these feature-structure relations will improve
the pattern recognition system. Moreover, news signs can be easily
included in the implemented recognition system using their struc-
tural elements description, instead of having to train the whole
system for each specific sign (or word or morpheme). Currently,
BSL has a universe of around 10,000 signs according to Capovilla,
Raphael, and Maurício (2012a, 2012b), thus it would be impractical
to develop an SLR system for recognizing each individual sign. In
principle, the ideas advanced here could be applied to other sys-
tems in SLR elsewhere, just requiring adaptations to the specifici-
ties of the sign language of interest.

In our results, to illustrate the proposed methodology, we have
selected a set of 34 signs from Capovilla et al. (2012a, 2012b) as
shown in Fig. 1. These signs represent 34 distinct morphemes in
BSL. They were not chosen at random, but with the advise of a
BSL expert, in such a way that these signs represent a wide range
of structural elements of the language, and therefore are very rep-
resentative of the universe of signs in BSL.

These 34 signs are recorded in a database using RGB-D sensors.
The following information about each sign is recorded: (i) intensity
image; (ii) depth image; (iii) skeleton image and (iv) positions of
the body. The authors will make this dataset available in public
domain for other researchers. After feature extraction, we employ
Support Vector Machines (SVM) for pattern recognition and classi-
fication. We used two different kernels for classification and results
between 70% and 97% in accuracy were obtained for each relation
‘‘extracted feature/structural element in BSL’’.

The remainder of the paper is organized as follows: first, in Sec-
tion 2, we present an overview of related work. In Sections 3–5, the
structure of BSL, our methodology and our system classification,
respectively, are described. Section 6 shows the experiments and
results. Finally, in Section 7 we present our conclusions.
2. Related work

Sign Language Recognition (SLR) is an important part of the
larger application field of Hand Gestures Recognition (HGR)
in Human–Computer Interaction. Complete works describing
applications and techniques in HGR can be seen in Watson
and College (1993), Chakraborty, Sarawgi, Mehrotra, Agarwal,
and Pradhan (2008), Suarez and Murphy (2012), Chen, Wei, and
Ferryman (2013), Palacios, Sagüés, Montijano, and Llorente
(2013), Zhang, Yang, and Tian (2013) and Ren, Yuan, Meng, and
Zhang, 2013 over the last two decades. But when SLR is the subject,
some specific issues are recurrent, regardless of the methodology
used. Designing solutions that achieve good performance despite
all the constraints and difficulties imposed by the complexity of
the problem is the real challenge.

Issues related to sign composition, interaction, relationships
between hands, different classes of signs, lexicon complexity and
non-standard sign translation and other sign language paradigms
are discussed in Bossard, Braffort, and Jardino (2003) and
Caridakis, Karpouzis, Drosopoulos, and Kollias (2012). Also, in
Bossard et al. (2003), authors propose an SLR system design with
the following system architecture in three levels: (i) sign recogni-
tion, (ii) sign selection and (iii) detection of relationships between
signs. Each level itself can involve a very complex system design.

In Parton (2006), the author presents an overview about how
techniques in different areas of Artificial Intelligence deal with
SLR and translations. Designing SLR systems is a multidisciplinary
task that can involve areas such as robotics, virtual reality, com-
puter vision, neural networks, Virtual Reality Modeling Language
(VRML), three-dimensional (3D) animation, natural language pro-
cessing and intelligent computer-aided design. In Loeding, Sarkar,
Parashar, and Karshmer (2004) and Ong and Ranganath (2005)
we can find discussions about the progress and future of auto-
mated systems for SLR. Most recently, authors in Futane,
Dharaskar, and Thakare (2012), Ong, Cooper, Pugeault, and
Bowden (2012) and Cooper, Ong, Pugeault, and Bowden (2012)
present a comparative study of different approaches in Sign Lan-
guage Recognition. Out of possible approaches described in their
work, such as glove based techniques, vision-based techniques
and analysis of drawing gestures, we believe that vision-based
techniques are the most natural way of constructing a human–
computer interface and tackling the related challenges, in this case
(i) segmentation of moving hands, (ii) tracking and analysis of
hand motion and (iii) recognition itself.

The first issue to address when designing systems for SLR is
related to the interaction between the user doing the signs and
the computational interface. This interaction can employ glove-
based systems or vision-based systems. In the first case, extensive
overviews about gloves equipment and sensors in many applica-
tions in HGR can be found in Dipietro, Sabatini, and Dario (2008)
and Parvini et al. (2009). In these two papers, the authors discuss
many applications with data gloves. In Starner and Pentland
(1995), Starner, Weaver, and Pentland (1998), Ong et al. (2012)
and Cooper et al. (2012), the authors use colored gloves as markers.
In Brashear, Starner, Lukowicz, and Junker (2003) multiple sensors
are used in a system for mobile sign recognition and in Zhang et al.
(2011) multiple sensors are used in a framework for Sign Language
Recognition. In both glove-based systems and vision-based sys-
tems, sensors and markers are used to provide information about
velocity, direction, position, orientation and angles of each hand.
Glove-based systems can provide better precision and efficacy in
detecting and tracking hands. However, they might be more
expensive and require additional equipment for the user.

On the other hand, vision-based systems can be much cheaper
and more comfortable for users. Therefore, vision-based sys-
tems have received increased attention from researchers and



Fig. 1. The 34 signs used in our experiment. (1)‘‘person’’, (2)‘‘to spread’’, (3)‘‘to copy’’, (4)‘‘to catch’’, (5)‘‘to gather’’, (6)‘‘to disappear’’, (7)‘‘to look’’, (8)‘‘fair’’, (9)‘‘truth’’,
(10)‘‘weight’’, (11)‘‘justice’’, (12)‘‘who’’, (13)‘‘nothing’’, (14)‘‘to believe’’, (15)‘‘to forget’’, (16)‘‘to love’’, (17)‘‘to afflict’’, (18)‘‘to commemorate’’, (19)‘‘rancor’’, (20)‘‘assembly
meeting’’, (21)‘‘to compare’’, (22)‘‘to scream’’, (23)‘‘to speak’’, (24)‘‘to absorb’’, (25)‘‘to fatten’’, (26)‘‘to quarrel’’, (27)‘‘perspicacious’’, (28)‘‘to shine’’, (29)‘‘maid’’, (30)‘‘to
replace’’, (31)‘‘prison’’, (32)‘‘television’’, (33)‘‘yesterday’’, (34)‘‘future’’.
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developers. For these systems, general or special cameras capture
images as data input. Papers describing system solutions using
intensity (RGB), gray, and black and white images as their input
can be found in Cui and Weng (2000), Zahedi, Keysers, and Ney
(2005b), Zahedi, Keysers, Deselaers, and Ney (2005a), Haberdar
and Albayrak (2005), Kawulok (2008), Dreuw, Stein, and Ney
(2009), AL-Rousan, Assaleh, and Tala’a (2009) and Diraco, Leone,
and Siciliano (2013). Most researchers in HGR are using RGB-D
sensors as camera. With this sensor, we can obtain intensity
(RGB), depth and skeleton (position) images, hence making it eas-
ier to detect and track hands. Authors in Liu and Fujimura (2004)
provide a hand gesture recognition method using depth data
obtained from a special camera. In recent papers, one of the most
used RGB-D sensor in HGR and SLR in recent years is the Microsoft
Kinect, mainly because of its low cost and the availability of a
Developer Toolkit. More information about the sensor Kinect can
be found in Cruz, Lucio, and Velho (2012) and Mankoff and Russo
(2013). For HGR we can see the use of Kinect in the following work:
(Chaaraoui, Padilla-López, Climent-Pérez, & Flórez-Revuelta, 2014;
Chen et al., 2013; Dihl & Musse, in press; Frati & Prattichizzo, 2011;
Li, 2012; Palacios et al., 2013; Ramey, González-Pacheco, &
Salichs, 2011; Ramirez-Giraldo, Molina-Giraldo, Alvarez-Meza,
Daza-Santacoloma, & Castellanos-Dominguez, 2012; Suarez &
Murphy, 2012). In the specific case of SLR, Kinect has been used in
the papers presented by Zafrulla, Brashear, Starner, Hamilton, and
Presti (2011), Uebersax, Gall, Van den Bergh, and Van Gool (2011),
Zaki and Shaheen (2011), Phadtare, Kushalnagar, and Cahill (2012),
Boulares and Jemni (2012) and Oszust and Wysocki (2013). Authors
in Trindade, Lobo, and Barreto (2012) propose a system design based
on glove data and vision data together, joining both concepts.

Efforts to create public databases with signs in sign language
have been done by some researchers. For instance, (Duduchi &
Capovilla, 2006) shows an interface and a dataset for Brazilian Sign
Language Recognition. Databases for American Sign Language Rec-
ognition are described in Yang, Sarkar, Loeding, and Karshmer
(2006), Cooper and Bowden (2007) and Cooper, Pugeault, and
Bowden (2011).

In terms of the pattern recognition and classification step of
these systems, different methods have been used. In general, archi-
tectures based on Neural Networks (NN) are used, as in Huang
and Huang (1998), Karami, Zanj, and Sarkaleh (2011), Sole and
Tsoeu (2011), Karmokar, Alam, and Siddiquee (2012), Maraqa,
Al-Zboun, Dhyabat, and Zitar (2012) and Ahmed (2012). SVM have
also been used by Yang and Lee (2013). On the other hand, Hidden
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Markov Models (HMM) have been used in many works for classifi-
cation of the hands, as in Haberdar and Albayrak (2005), Haberdar
and Albayrak (2006), Wang, Chen, Zhang, Wang, and Gao (2007),
Yin, Starner, Hamilton, Essa, and Rehg (2009), AL-Rousan et al.
(2009), Zafrulla et al. (2011), Zaki and Shaheen (2011) and
Auephanwiriyakul, Phitakwinai, Suttapak, Chanda, and Theera-
Umpon (2013). Authors in Aran, Burger, Caplier, and Akarun
(2009) use HMM to detect manual and non-manual signs.

In this work we employ computer vision techniques and RGB-D
sensor to segment and detect the movements of the hands. We
extract features and relate them to the elements of the phonolog-
ical structure of the language. The classifier system is trained to
learn and detect this relation and these elements, in order to iden-
tify the sign (morpheme). In this way, scalability is straightforward
since adding new signs to the system requires their description in
terms of their structural elements, without needing to retrain and
adjust the whole system anew.

3. Methodology for feature extraction

In this section, we describe each step in our methodology for
feature extraction in SLR. First, we present, in Section 3.1, the pho-
nological structure of BSL based on the work by Quadros and
Karnopp (2004). Next, in Section 3.2, we discuss a video summari-
zation technique employed in the methodology. In Section 3.3, we
describe the database structure, and the hardware and software
tools used to implement this approach and, in Section 3.4, we
describe the method used to detect the region of interest (ROI)
using intensity, depth and position images obtained by the RGB-
D sensor.

3.1. Phonological structure in Brazilian Sign Language

We explore the phonological structure of BSL in our approach.
For more details about BSL structure, see (Quadros & Karnopp,
2004). Four elements make up each sign in BSL: (i) configuration
of the hands, (ii) articulation points, (iii) type of movement of
the hands and (iv) orientation. However, the classification provided
in Quadros and Karnopp (2004) is very extensive and detailed, and
classifying each sign or morpheme exactly into values of these ele-
ments is a very complex task even for experts in BSL, let alone for a
computer system. Therefore, we have to adopt a simplified set of
these attributes and elements, which are summarized in Table 1.
We describe each element below:

1. Configuration of the hands: This element of the phonological
structure provides information about the shape of the hands,
but there is no consensus about the amount of possible
Table 1
Elements of the phonological structure of BSL used for Sign Language Recognition.
Each element consists of a set of attributes with possible values shown in the
rightmost column.

Element Attributes Values

group 1; . . . ;13f g
Configuration of the

hands
axis
alignment

x; y; zf g

variation yes;nof g

head right; center; leftf g
Articulation points shoulder right; center; leftf g

body right; center; leftf g

Type of movement type up; down; right; left; inside; outsidef g
frequency simple; repeatedf g

Orientation orientation up; down; inside; outside; tothesidef g
variation yes;nof g
configurations available in Brazil for the BSL. We use as refer-
ence a study conducted in Quadros, Oliveira, and Miranda
(2007), where the authors define 134 possible shapes for the
hands and group them in 13 groups based on similarity. When
treating this element, we have the following attributes and val-
ues: (i) group, from 1 to 13; (ii) axis alignment, either x, y, or z;
(ii) variation of the configuration during the execution of the
sign, yes or No.

2. Articulation points: it provides information about the location
of the sign in the neutral space. The neutral space is the area
ahead the body where the signs are done. We divide the neutral
space into three areas, with one attribute corresponding to the
(i) head, (ii) shoulder and (iii) body. The possible values for each
attribute are either right, center or left.

3. Type of movement of the hands: provides information about
the type of movement for the sign, in case the sign is dynamic.
We adopt the following attributes for this element: (i) type,
either up, down, right, left, inside or outside; (ii) frequency,
either simple or repeated.

4. Orientation of the hand: provide information about the orienta-
tion of the palm of the hand in a sign. The following attributes
and values are considered: (i) orientation, either up, down,
inside, outside, or to the side; and (ii) change of orientation,
yes or No.

3.2. Video summarization

Video summarization is an important topic in video classifica-
tion and retrieval, where large videos should be compacted into
more representative frames. In our case, we employ video summa-
rization to reduce the number of frames in each sign, in order to
avoid the processing of redundant frames that might be present
in the recorded sign. Basic techniques for video summarization
employ clustering techniques to group similar frames with respect
to a given similarity metric.

We formulate the video summarization problem as a classic
optimization problem known as the Maximum Diversity Problem
(MDP), described in Freitas, Guimaraes, Pedrosa Silva, and Souza
(2014). The MDP consists in finding a subset M Mj j ¼ mð Þ from a
set N Nj j ¼ nð Þ of elements in such a way that the diversity of the
m elements is maximized. Many relations of diversity can be used
to define divergence values dij according to the practical applica-
tion of the MDP. The problem is concisely described in Kuo,
Glover, and Dhir (1993) and repeated in (1), where xi ¼ 1 means
that element i is in the subset M:

max
Xn�1

i¼1

Xn

j¼iþ1

dijxixj; subject to
Xn

i¼1

xi ¼ m ð1Þ

where xi 2 0;1f g 8 i ¼ 1; . . . ;n
The values dij in the diversity matrix ½D� are calculated by a

problem-specific metric, thus we have to define a metric of diver-
sity between frames in videos. In this case, we can consider two
aspects: temporal distance and color differences. In a temporal
space, we are looking for the most distant frames in time. In a color
space, we want to maximize diversity due to changes in color. The
proposed diversity matrix is given by

½D� ¼ ½C� þ ½T� ð2Þ

where ½C� is a matrix with the color difference between frames i and
j and ½T� is a matrix with the time label of each frame.

The MDP is an NP-hard problem that can be solved with either
exact methods or heuristics. In order to get a fast and efficient solu-
tion to the problem, we employ the Memetic Self-Adaptive Evolu-
tion Strategies (MSES) described in Freitas et al. (2014). It is an



Fig. 2. Detection of region of interest – right and left hands for the sign ‘‘to
commemorate’’. Video recorded using software nuiCaptureAnalyze working with
Kinect sensor: (a) Intensity, (b) Depth and (c) Position. (d) Videos selected by video
summarization using Maximum Diversity Problem to solve it. (e), (f) Region of
interest in RGB detected to right and left hands, respectively. (g), (h) Region of
interest detected in black and white using skin color detection.(For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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evolutionary algorithm with some local search heuristics designed
for the MDP.

In this paper, we select a fixed number of representative frames
for each sign. In Fig. 2(d), we show the m ¼ 5 selected frames for
the sign ‘‘Comemorar’’3 as an example.
3.3. Database and tools

The availability of databases in HGR and SLR for use by the sci-
entific community in computer vision research is still a challenge.
Some efforts are presented by Chunli, Wen, and Jiyong (2002), Dias,
de Souza, and Pistori (2006) and Cooper and Bowden (2007),
regarding data for SLR. Some researchers identify this need for
standardized data, promoting collective actions to build large data
in HGR using RGB-D sensors, see for instance (Escalera, González,
Guyon, & Moeslund, 2013). The first difficulty, in the case of SLR,
is reaching a consensus on which signs are representative of a
given sign language and if a set of selected signs from a given sign
language is useful and representative for testing and evaluating
systems designed for other sign languages. Other issues are related
to the resistance of the deaf community itself and regional varia-
tions as discussed in Schemer (2003), Johnston (2003) and Van
Cleve (2003).

Given these difficulties, for the present work, we decided to
create our own database, selecting 34 signs in BSL according to
morphemes described in Capovilla et al. (2012a, 2012b), each sign
being representative of many other signs due to similar character-
istics. Given that there is no database available with this subset of
signs, we decided to build our own database with five samples of
each sign and for only one signer. We therefore focus on the
variation in signs not on variations of the signer.

Signs are recorded using the Kinect sensor and the nuiCapture
Analyze software. Kinect sensor is a low cost RGB-D camera
3 tr. v. to commemorate.
developed by Microsoft for the XBOX video game. The integrated
hardware and software in Kinect allows the detection and record-
ing of twenty specific points of the human body. These properties
can be found in Cruz et al. (2012), Microsoft (2013) and Mankoff
and Russo (2013).

For the generation of the database, two requirements were
given: (i) The video must contain the sign space, which is from
above the waist. Recording legs is not necessary, since they do
not participate in the execution of signs. (ii) The distance should
be enough to capture the movements of the arms. Based on these
requirements, the distance was set as 1.9 m (6.2 feet) from the
Kinect sensor. This value is within the recording range of the sen-
sor, which is between 0.8 m (2.6 feet) and 3.5 m (11 feet).

Using these tools, we obtain three videos recorded at the same
time for each sample sign. We can see one frame of one sign in
Fig. 2: (a) color frame from the intensity video, (b) depth frame
from the depth video, (c) skeleton frame from the skeleton video.
The video frame rate is 30 frames per second and all the three vid-
eos are recorded in AVI format (audio and video format from
Microsoft).

3.4. Detection of the ROI

Each sign has two Regions of Interest (ROI), one for each
hand. In this section we describe how we extract the ROI from
the video captured by the Kinect sensor and the nuiCapture Analyze
software.

We first remove the background by using the depth information
from the depth video, see Fig. 2(b). With the skeleton video,
Fig. 2(c), it is possible to find the coordinates of the hands. In this
skeleton video, right hand and wrist are always recorded with blue
color, while left hand and wrist are recorded with orange color.
With the information about the position of the hands detected in
the skeleton video, we can make the segmentation of the hands
in the RGB video, already without the background.

In this way, we can extract the ROI for both hands as shown in
Fig. 2(e) and (f). Finally, we detect face and hands using an algo-
rithm for skin color detection and convert these images to black
and white format, see Fig. 2(g) and (h).

The detection and extraction of the ROI represent the pre-pro-
cessing part of the methodology for feature extraction. Next, we
describe the techniques employed to actually obtain the features
and how they relate to the elements of the phonological structure.
4. Relating features to elements in BSL

We extract seven features related to the phonological structure
of BSL as described in Section 3.1, which are summarized in Table 2.
These features are described in the following next subsections. It is
important to highlight that all the features are extracted after the
summarization and for each representative frame identified in
the summarization step.

4.1. Two-dimensional distance

For obtaining this feature, we calculate the two-dimensional
Euclidean distance, in pixels, between both hands and shoulder
center. We select the shoulder as reference because the change
in its position is negligible when the signer is performing the sign.
The positions of the hands and the shoulder are given by the aver-
age positions of the pixels in the block of pixels that compose these
parts extracted from the skeleton image. We can see this skeleton
image in Fig. 3(a).

Individual colors are assigned to hands and shoulder positions
among twenty possible body parts detected by using the RGB-D



Table 2
Extracted features from the region of interest are shown in the left column. Structural
elements in BSL associated with these features are shown in the right column.

Sec. Analyzed features Elements in BSL

4.1 Distance between pixels Articulation points
4.2 Distance in millimeters Articulation points
4.3 Velocity Type of movement, Orientation
4.4 Area of hands Configuration of the hands
4.5 Corners average Articulation points, Type of

movement, Orientation
4.6 Detected lines Configuration of the hands
4.7 SURF descriptors Type of movement, Orientation

Fig. 3. (a) Feature 1 extracted: two-dimensional Euclidean distance between hands
position and center of the shoulder. (b) Reference for feature 2, three-dimensional
distance in millimeters.

Fig. 4. Features extracted from right hand in the sign ‘‘to whip’’ in BSL: (a) Velocity,
(b) Hands area, (c) Corners average and (d) Detected lines.
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sensor. In our case, the blue region represents the right hand, the
orange region represents the left hand and the yellow color is for
the shoulder center.

This feature provides information related to the articulation
point of the sign in BSL.

4.2. Three-dimensional distance

Kinect records, using nuiCapture Analyze, the three-dimensional
distance between sensor and signer in Matlab format (MathWorks,
2012). In Fig. 3(b) we can see that the origin of reference for these
values is the sensor.

Three-dimensional distance provides information about the
articulation point of the sign in BSL.

4.3. Velocity

We use the optical flow technique to calculate velocity for each
sign. For more details about optical flow, see (Horn & Schunck,
1981). This feature provides vectors calculated using brightness
difference between frames in a video. Thus, based on these vectors,
we obtain information about hands tracking. In Fig. 4(a) we can see
vectors calculated using this technique. This feature is related to
the following structural elements in BSL: type of movement and
orientation of the hands.

4.4. Area of hands

For this feature, we also use the optical flow technique, which
allows to segment objects in an image based on image brightness
discontinuity. In our region of interest, hands and, in some cases,
the face, are the biggest objects. In Fig. 4(b) we can see these areas,
all of them detecting hands. We observe, in frame 2, three detected
objects: two hands and a face. This occurs because in the sign used
as example, ‘‘to whip’’, the hands cross in front of the face. This
characteristic can be preserved since this crossing is peculiar for
this sign. Hands area is directly related to the Configuration of
the hands in BSL.

4.5. Corners average position

The area of the image where there is a large difference between
pixels is named corner. Techniques to perform corner detection can
be found in Harris and Stephens (1988), Shi and Tomasi (1994) and
Rosten and Drummond (2006). In our approach, corners are
detected using the Harris corner detector and an average of posi-
tions of these corners is the extracted feature. For more details
about Harris corner detection technique, see (Harris & Stephens,
1988). This feature is related to the articulation points, the type
of movement and orientation in BSL. An example of this feature
is available in Fig. 4(c).

4.6. Detected lines

The sixth feature used in this work is given by the lines detected
in each image. The technique used here is the Hough Transform,
see (Illingworth & Kittler, 1988). This feature is an ordered pair
(q; h), because we use polar coordinates. In Fig. 4(d) we show the
biggest lines extracted from the black and white image for each
frame. These lines can contain information about the configuration
of the hands in BSL.

4.7. Amount of common points between frames

The descriptor algorithm SURF (Speed-Up Robust Features)
available in Matlab, (MathWorks, 2012), is used to extracted the
amount of common points between frames. We can use SURF to
find common points between representative frames of the sign
using the template matching technique. At each two frames, SURF
shows a different amount of points between them, showing the
difference of movement between frames. This feature is related
to the type of movement and orientation in BSL.

4.8. Assembling the feature vector

By relating each one of the seven features to each of the four
structural elements in BSL, we can assemble the feature vector
for each element. The number of features in each feature vector
depends on the element under consideration. According to Table 2,
we have the following feature vectors:



Table 3
Structure of feature vector for M features and n frames. In this study, we analyzed
M ¼ 1;2;3 features, depending on the element, and n ¼ 5 frames.

Hand (right or left)

1 . . . n Frames
1 a M 1 a M 1 a M Features

Table 4
Structure of feature vector for M features and n frames with variable time added.

Hand (right or left)

1 . . . n Frames
1 to M 1 to M 1 to M t1 to tn Features

Table 5
Structure of feature vector for M features and n frames with variable time multiplied.

Hand (right or left)

1 . . . n Frames
1.t1 to M.tM 1.t1 to M.tM 1.t1 to M.tM Features

Fig. 5. System schematic. (a) Features: 7 extracted features. (b) Vector: see Table 3
for structure, n = 5 selected frames and M = numbers of features for a given element,
see Table 2 for reference. (c) System classification: kap outputs for the articulation
point (kap ¼ 5 for right hand and kap ¼ 4 for left hand); khc outputs for the
configuration of the hands (khc ¼ 12 for right hand and khc ¼ 10 for left hand); kmov

outputs for the type of movement (kmov ¼ 8 for right and left hands); kor outputs for
the orientation (kor ¼ 7 for both right and left hands).
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� To the recognition of the element Articulation points, the fol-
lowing features are used (i) distance between pixels, (ii) dis-
tance in millimeters and (iii) corners average.
� To the recognition of the element Configuration of the hands, (i)

area of hands and (ii) detected lines are used.
� To the element Type of movement we utilize (i) velocity, (ii)

SURF descriptors and (iii) corners average to assemble the cor-
responding feature vector.
� Finally to the element Orientation, the feature vector is com-

posed by the features (i) velocity and (ii) corners average.

The structure of the feature vector is shown in Table 3. Features
(1 to M) are extracted from the first representative frame in the
video (n = 1) and, according to the element under consideration,
their values are appended sequentially in the vector. This is done
for the n frames in sequence. We end up with a feature vector
for each hand and for each one of the four structural elements,
which are the input for the classification system presented in the
next section.

The time variable is an important information to be considered
in the recognition of dynamic signs. In our work, we add this infor-
mation in two distinct ways in the feature vector. In the experi-
ments, we investigate and compare the performance of the
system when using

1. only the feature vector without the time information as in
Table 3;

2. the feature vector with the time values of each frame added to
it, see Table 4;

3. the feature vector with the time values of each frame multiplied
by the values of the features, see Table 5.

5. Classification system

Fig. 5 shows a schematic of the implemented classification sys-
tem. First, in (a) Features, we have as input the features extracted as
described in Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7. In (b) Vector
(n frames), a feature vector is assembled for each element in the
phonological structure of the language, according to Table 2 and
as described in Section 4.8. These vectors are the inputs of our
classification system, in area (c). Our system classification is in fact
implemented by Support Vector Machines (SVM) with two differ-
ent kernels. This SVM identifies and classifies the linguistic ele-
ments based on the extracted features.

We compare results using SVM with two different kernels. First,
we use a linear kernel, meaning dot product, as in Eq. (3). Second,
we implement a radial basis function kernel as in Eq. (4).

f ðxi; xjÞ ¼
XS

i¼1

XS

j¼1

xi � xj ð3Þ

f ðxi; xjÞ ¼
XS

i¼1

XS

j¼1

exp �kxi � xjk2

r2

 !
ð4Þ

where xi and xj are feature vectors of signs in the database.
In Fig. 6 and 7 we show the attributes for system classification

for each one of the 34 signs selected in this work.

6. Experiments and results

To evaluate our approach, we created a database with 34 spe-
cific signs. These signs were selected by a structural division done
in Capovilla et al. (2012a), where authors describe 10.236 signs in
BSL. Among these, 1.577 signs are mapped and 982 signs are com-
posed by one or more than one of the 34 molecular morphemes
chosen. Our database is composed by one example of each one of
these 34 morphemes established. According to Capovilla et al.
(2012a), it is possible to build other complex signs using these
morphemes. In Fig. 1 we show the signs selected.

Remember that the database has five samples of each one of the
34 morphemes, making up a total of 170 examples in the database.
We have performed 100 executions for each experiment, varying
randomly the three samples of each sign used for training and
the two samples used for testing the system, and we show aver-
ages and standard deviations for them, using statistical analysis



Fig. 6. Attributes for right hand versus 34 signs. Articulation points: 1. At right head. 2. At center head. 3. Sh.: shoulder. At right shoulder. 4. At right body. 5. At center body.
Configuration of the hands: 1. G1. 2. G2. 3. G4. 4. G6. 5. G7. 6. G8. 7. G10. 8. Align in axis x. 9. Align in axis y. 10. Align in axis z. 11. Change in Configuration of the hands or
alignment: yes. 12. Change in Configuration of the hands or alignment: No. Type of movement: 1. Up. 2. Down. 3. Right. 4. Left. 5. Inside. 6. Outside. 7. Frequency: simple. 8.
Frequency: repeated. Orientation:1. Up. 2. Down. 3. Inside. 4. Outside. 5. To the side. 6. Variation: yes. 7. Variation: No.

Fig. 7. Attributes for left hand versus 34 signs. Articulation points: 1. At left head. 2. Sh.: shoulder. At left shoulder. 3. At left body. 4. At center body. Configuration of the hands:
1. G1. 2. G4. 3. G6. 4. G8. 5. G10. 6. Align in axis x. 7. Align in axis y. 8. Align in axis z. 9. Change in Configuration of the hands or alignment: yes. 10. Change in Configuration of
the hands or alignment: No. Type of movement: 1. Up. 2. Down. 3. Right. 4. Left. 5. Inside. 6. Outside. 7. Frequency: simple. 8. Frequency: repeated. Orientation:1. Up. 2. Down. 3.
Inside. 4. Outside. 5. To the side. 6. Variation: yes. 7. Variation: No.
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ANOVA. We present results in box plot graphics. In the 100 execu-
tions, the sources of randomness are the training and test data and
the kernel parameters of the SVM in the classification system.
First, in Section 6.1, we compare two different kernels in terms
of the classification results for each element in BSL for both hands.
Next, in Section 6.2, we present the results of the comparison
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between the feature vector with and without the time information,
as explained in Tables 3–5.
6.1. Comparison between linear and RBF kernels

In Figs. 8 and 9, we present the classification results over the
test data for the right and left hand respectively, using the feature
vector only, as in Table 3.

We can see that, for the right hand, the average accuracy is
higher for the RBF kernel in the elements Articulation points, Type
of movement and Orientation. For the Configuration of the hands,
the average accuracy is very similar. Also, for this element, the
variation in accuracy is higher, showing the difficulty of correctly
classifying the attributes of this element.

For the left hand, the RBF kernel again presents better
results, specifically in the elements Configuration of the hands
Fig. 8. Comparison between the linear and RBF kernels in the classification of the struc
Type of movement (Mov) and (iv) Orientation (Or) for the right hand. Results obtained

Fig. 9. Comparison between the linear and RBF kernels in the classification of the struc
Type of movement (Mov) and (iv) Orientation (Or) for the left hand. Results obtained w
and Orientation. The linear kernel was better for the elements
Articulation points and Type of movement. However, many signs
are performed only with the right hand, with no participation of
the left hand.

Based on these experiments, we selected the RBF kernel for the
classification step.
6.2. Comparison of feature vectors

Using only the RBF kernel, we compared the feature vectors
described in Tables 3–5,, to see the influence of the time informa-
tion in the performance of the system.

For the right hand, the feature vector with the time information
appended had a slightly superior accuracy, specially for the element
Configuration of the hands. For the other elements, there were no
statistical difference between adding time or not, and how we add
tural elements (i) Articulation points (AP), (ii) Configuration of the hands (CH), (iii)
with the feature vector described in Table 3.

tural elements (i) Articulation points (AP), (ii) Configuration of the hands (CH), (iii)
ith the feature vector described in Table 3.



Fig. 10. Accuracy obtained by using the feature vectors described in Tables 3–5 for the RBF kernel in the classification of the elements (i) Articulation points (AP), (ii)
Configuration of the hands (CH), (iii) Type of movement (Mov) and (iv) Orientation (Or) for the right hand.

Fig. 11. Accuracy obtained by using the feature vectors described in Tables 3–5 for the RBF kernel in the classification of the elements (i) Articulation points (AP), (ii)
Configuration of the hands (CH), (iii) Type of movement (Mov) and (iv) Orientation (Or) for the left hand.
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this time information in the feature vector (see Figs. 10 and 11). Nev-
ertheless, based on these experiments, we decided to adopt the fea-
ture vector with the time information appended as in Table 4.

6.3. Sign recognition

The experiments in the previous sections show that the accu-
racy in identifying and classifying the attributes in the structural
elements was high. However, this information should be inte-
grated somehow in order to correctly recognize one sign among
the others. This can be done in different ways. In this section we
perform experiments by using a simple method for combining this
information: we compare the output of the classifiers for each
attribute of each element in both hands to the values in the lookup
tables presented in Figs. 6 and 7.

We calculate the Hamming distance between the output vector
and all the lines in the lookup tables, finding the closest k points
(with k ¼ 1;3;5).
Using the RBF kernel and the feature vector in Table 4, the aver-
age accuracy is shown in Table 6. In this Table, we compute the
accuracy by considering that a correct recognition is achieved
when the correct sign is within the k closest neighbors in the
lookup table, and we vary k from 1 to 5.

Sign Language Recognition is a very complex and challenging
problem, requiring the integration of feature extraction techniques
and technology and classification methods. Nonetheless, this
experiment shows that extracting features and relating them to
the structural elements of the language does help the recognition
of the signs. The previous sections showed that the accuracy for
classifying attributes of the structural elements is high, which
means that the feature extraction methodology proposed is indeed
useful to recognize the elements composing the sign. However, the
integration of this information for actual sign recognition is still a
challenge. Although some signs are correctly recognized with a
high rate, other signs still need additional information such that
correct recognition be achieved.



Table 6
Average accuracy for the recognition of each one of the 34 signs in the database, based
on the closest point in the lookup table.

Signs k = 1 (%) k = 3 (%) k = 5 (%)

1. Person 95 100 100
2. To spread 51 76 93
3. To copy 67 79 93
4. To catch 0 6 7
5. To gather 63 80 87
6. To disappear 94 97 100
7. To look 98 100 100
8. Fair 74 100 100
9. Truth 43 84 96
10. Weight 88 98 99
11. Justice 24 65 72
12. Who 66 100 100
13. Nothing 81 96 98
14. To believe 80 92 97
15. To forget 75 100 100
16. To love 20 100 100
17. To afflict 43 79 91
18. To commemorate 7 16 21
19. Rancor 20 99 100
20. Assembly meeting 7 51 70
21. To compare 30 79 92
22. To scream 98 100 100
23. To speak 70 100 100
24. To absorb 86 98 97
24. To absorb 17 43 55
26. To quarrel 18 45 69
27. Perspicacious 22 67 100
28. To shine 88 100 100
29. Maid 35 70 64
30. To replace 38 66 78
31. Prison 37 49 66
32. Television 0 4 6
33. Yesterday 0 2 5
34. Future 1 1 1
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If a new sign should be added to the sign recognition system, we
just need to add the recorded sign in the database and its descrip-
tion in terms of the structural elements as in Figs. 6 and 7. The
number of attributes and elements is always fixed, thus the num-
ber of classes in the classification system does not grow with add-
ing new signs. Therefore, in our approach scalability can in
principle be manageable given that BSL has more than 10,000
signs.
7. Conclusions

In this paper we have presented a methodology for feature
extraction in Brazilian Sign Language that explores the phonologi-
cal structure of the language and relied on RGB-D sensor for
obtaining data. From the RGB-D images we have obtained seven
vision-based features. We have related these features to structural
elements based on shape, movement and position of the hands.
The experiments show that the attributes of these elements can
be successfully recognized in terms of the features obtained from
the RGB-D images, with accuracy results individually above 80%
on average.

RGB-D sensors show a great potential as a tool in hand gesture
recognition in general, and in Sign Language Recognition specifi-
cally, because it produces three important types of image at the
same time: intensity image, depth image and skeleton image. Join-
ing information from these three images provide great power and
flexibility in which we can improve algorithms for image
processing.

The sign recognition rate was high for some signs and low for
others, but in general we can conclude that the proposed feature
extraction methodology and the decomposition of the signs into
their phonological structural can help expert systems designed
for SLR. The proposed methodology can also be applicable not only
to BSL but also to other sign languages in the world, because all
sign languages can be described in terms of their specific phono-
logical structure. This methodology shows great potential in SLR,
but also some challenges. The structure of sign language is very
complex as described in Quadros and Karnopp (2004), which was
simplified and summarized in the paper. The proposed extracted
features could be selected by using feature selection techniques
based on quality measures, such as ranking with F-Score or the
Pearson correlation coefficient. Feature selection is left for future
work. Another important point to be explored is the study of the
classification system performance based on the extracted features.
However, given the complexity of sign languages in general, per-
haps a more fruitful avenue would be exploring a more complex
description of the phonological structure in order to improve sign
recognition. This paper showed that even a simplified use of this
structure is beneficial in the design of systems for SLR. Finally,
other ideas about how to integrate the information acquired in
the classification of elements into sign recognition should be fur-
ther explored.
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